Gammachirp Wavelet and Neural Network for Classification of Pathological Voices
نویسنده
چکیده
In this paper we present a new method for voice disorders classification based on a gammachirp wavelet transform and multilayer neural network (MNN). The processing algorithm is based on a hybrid technique which uses the gammachirp wavelets coefficients as input of the MNN. The training step uses a speech database of several pathological and normal voices collected from the national hospital “Rabta Tunis” and was conducted in a supervised mode for discrimination of normal and pathology voices and in a second step classification between neural and vocal pathologies (Parkinson, Alzheimer, laryngeal, dyslexia...). Several simulation results will be presented in function of the disease and will be compared with the clinical diagnosis in order to have an objective evaluation of the developed tool.
منابع مشابه
Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks
This paper presents a new strategy of identification and classification of pathological voices using the hybrid method based on wavelet transform and neural networks. After speech acquisition from a patient, the speech signal is analysed in order to extract the acoustic parameters such as the pitch, the formants, Jitter, and shimmer. Obtained results will be compared to those normal and standar...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملImproving the performance of neural network in differentiation of breast tumors using wavelet transformation on dynamic MRI
ABSTRACT Background: A computer aided diagnosis system was established using the wavelet transform and neural network to differentiate malignant from benign in a group of patients with histo-pathologically proved breast lesions based on the data derived independently from time-intensity profile. Materials and Methods: The performance of the artificial neural network (ANN) was evaluated u...
متن کاملVoice Disorders Identification Using Multilayer Neural Network
In this paper we present a new method for voice disorders classification based on multilayer neural network. The processing algorithm is based on a hybrid technique which uses the wavelets energy coefficients as input of the multilayer neural network. The training step uses a speech database of several pathological and normal voices collected from the national hospital “Rabta Tunis” and was con...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008